If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d^2-20d=50
We move all terms to the left:
d^2-20d-(50)=0
a = 1; b = -20; c = -50;
Δ = b2-4ac
Δ = -202-4·1·(-50)
Δ = 600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{600}=\sqrt{100*6}=\sqrt{100}*\sqrt{6}=10\sqrt{6}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-10\sqrt{6}}{2*1}=\frac{20-10\sqrt{6}}{2} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+10\sqrt{6}}{2*1}=\frac{20+10\sqrt{6}}{2} $
| 11x-18=4x+9 | | x÷4+12=30 | | 4x-(1-2x)=2x-(7+6x) | | 4x-1-2x=2x-7+6x | | 5(7x+4)=33 | | y÷0.25=4 | | 4x-5+3=2x+21+3x | | 3x-2-4x=x-7+3x | | 5x+11=41* | | 6d-6d+18=0 | | a/13-1=a-25/26 | | 2x-8×x=234^2 | | 21-4d=42+3d | | -5(x+2)-4=-59 | | 5y-9=-81-4y | | 4x²-48=x²8 | | 4x²-48=x² | | 14(x+2)=98 | | 3(x-3)+22=22 | | y*3/3=114/3 | | x-10+10=25+10 | | x+17-17=22-17 | | 9(14)x=1,764 | | 4(x+8)=140 | | 5×83n+1=80 | | –(3x–4)=3x–8 | | 15x-45=3 | | 24+25=x5 | | -4y+12=-2(4y+10 | | n×7=56 | | 23x=45x+34 | | 14n=89 |